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The four-wave interaction technique is used to demonstrate the impact of primary electrostatic (drift
wave) turbulence on the generation of large-scale electromagnetic structures (blobs). The analysis
includes finite ion temperature effects and the associated diamagnetic contributions to the Reynolds
stress. The impact of equilibrium plasma density variation on blob propagation is also discussed.
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1. Introduction

Cross-field plasma transport in both L- and H-mode plasmas is
characterized by intermittent radial convection of filamentary
structures elongated along the magnetic field (see Ref. [1]). Such
coherent meso-scale structures have been called blobs and ELM fil-
aments in L- and H-mode regimes, respectively. While peeling –
ballooning instabilities and their subsequent nonlinear saturation
have been cited as the mechanism of ELM generation [2], plasma
polarization (due to magnetic field curvature) has been suggested
(see Ref. [3] and the references therein) to be an underlying mech-
anism for the formation and convection of blobs. It has also been
recently proposed that nonlinear plasma polarization due to Rey-
nolds stresses associated with small-scale drift wave turbulence
can be an important factor in the formation of electromagnetic
meso-scale structures i.e., blobs [4].

Generically, the process of formation of meso-scale structures
as a result of modulational instability of drift waves has been a
subject of intensive studies for a long time [5]. It is widely recog-
nized now that such structures, in particular zonal flows, play a
critical role in regulation and saturation of drift wave turbulence
and transport [6]. Our analysis of turbulent blob generation in [4]
was based on the application of the wave kinetic equation ap-
proach. Here we consider the same process of blob generation by
using the four-wave interaction approach. We also discuss the ef-
fects of equilibrium plasma density variation on the propagation
of seeded blobs.

In Section 2, we present the system of equations and review the
results of Ref. [4]. In Section 3, we consider the generation of blobs
through the modulational instability of drift waves based on the
four-wave interactions. In Section 4, we discuss the effects of the
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equilibrium plasma density variation on the blob propagation
and in Section 5 we summarize the results of the paper.

2. Governing equations

We use a system of reduced fluid equations (the notation is
standard) that can be obtained from standard fluid equations by
expansion in 1/B parameter [7]. In the low frequency, x < xci,
and long wavelength, k2

?q2
i < 1 approximations, for low plasma

pressure r�~B ¼ 0, the electron continuity equation reduces to a
simple form:

o

ot
þ~VE � r

� �
n� 2ðn~VE þ n~Vpe � r ln B� 1

e
rkJ ¼ 0: ð1Þ

where ~VE ¼ ð~ez �r/Þ=B, ~Vpe ¼ �ð~ez �rpeÞ=ðenBÞ, and~ez ¼~b is the
direction of the local magnetic field. The nonlinear parallel gradient
operator rkð. . .Þ is defined as

rkð. . .Þ ¼ oð. . .Þ=ozþ ð~B � rð. . .ÞÞ=B

¼ oð. . .Þ=oz� ðêz � rA�rð. . .ÞÞ=B0 ð2Þ

Here A is the parallel component of the vector potential that de-
scribes magnetic perturbations ~~B ¼ �~ez �rA. The parallel compo-
nent of the electric current is J ¼ �ð1=l0Þ r2

?A. In the regime,
x < kkmTe, which is assumed in our work, Ohm’s law is

oA=otþrkð/� ðTe=eÞ ln nÞ ¼ 0 ð3Þ

For finite Ti plasma, inertial polarization drift and the ion drift
due to gyroviscosity contribute to the Reynolds stress, which is
responsible for generation of large-scale structures; hence these
terms are retained in the present analysis. Taking into account
the gyroviscous cancellation (e.g. see Refs. [7,8]), ion continuity
equation is
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o

ot
þ~VE � r

� �
n� 2ð~VE þ~VpiÞn � r ln B

� n0q2
ir? �

d0

dt
er?/

Ti
þr?pi

pi

� �
¼ 0 ð4Þ

where, ~Vpi ¼ ð~ez �rpiÞ=ðenBÞ,d0
dt ¼ o

otþ 1
B0

� �
~ez � r/�r. Quasineu-

trality equation is

�rkJþ ð2=BÞð~ez �rðpe þ piÞÞ � r ln B

þ en0q2
ir? �

d0

dt
er?/

Ti
þr?pi

pi

� �
¼ 0 ð5Þ
2.1. Separation of scales

In the following analysis, all perturbed quantities are repre-
sented as a sum of large-scale and small-scale components,
X ¼ Xk þ Xq; q < k, where k and q are the small and large-scale
wave-numbers respectively. An analogous separation of scales is
assumed in the time domain, Xq < xk: xk are the eigen-frequen-
cies of small-scale fluctuations, XkðtÞ � expð�ixktÞ and X are the
large-scale mode frequencies, XqðtÞ � expð�iXtÞ. The latter are af-
fected by nonlinear effects and can deviate significantly from the
linear eigenvalues.

2.2. Inverse cascade and ballooning instability of meso-scale structures

In Ref. [4], blob generation was explained as a synergy of the
interchange drive and nonlinear effects associated with drift wave
turbulence. The Reynolds stress was obtained using the wave ki-
netic equations. Based on the resulting dispersion relation, an
instability criterion was derived for the ensemble averaged magni-
tude (h/i) and length-scales (hkxi) of the fluctuations for the desta-
bilizing turbulent stresses to overcome the Alfven stabilization (for
b ¼ c2

s=v2
A)

qshkxieh/i=T > 1=ðqsRqy

ffiffiffi
b

p
Þ; ð6Þ

where qs is the safety factor. For the large-scale modes, an instabil-
ity criterion was derived to explain the length-scales, D, of the
meso-scale structures. A simple, order of magnitude estimate was
obtained for large plasma fluctuations by taking qyD � 1, and
neglecting the destabilizing effect of turbulent stresses in the insta-
bility criterion

c2
s =RD� c2

s q
2
s=D

4 > V2
A=q2

s R2 ð7Þ

where qs is the safety factor. The competition of the first and second
terms defines the characteristic size of meso-scale structure for
which the left hand side is maximal:

Dm � ðq2
s RÞ1=3 ð8aÞ

(we assume that Dm < Ln, where Ln is the density scale length).
Then the instability within this flux tube occurs for relatively high
beta at the edge of plasma

b > q�2
s ðqs=RÞ2=3

: ð8bÞ
2.3. Numerical simulations

In order to verify our analytic estimates we solve 2D version of
Eqs. 1, 3, 5, with the assumption that the parallel scale length of the
perturbations is � qsR. We chose sub-critical gradient of plasma
density to seed a large amplitude drift wave (satisfying Eq. (6)).
Preliminary results show qualitative agreement with the physical
picture of blob generation described above and demonstrate blob
formation and detachment for relatively large amplitude of drift
waves (see Fig. 1).
3. Four-wave modulational interactions of drift waves and blob
generation

In this section, we follow the approach of four-wave modula-
tional interaction to study blob generation. We proceed from the
above-described separation of scales, and for the primary fluctua-
tions, we consider simple drift wave type fluctuations assuming
that primary modes are electrostatic and that the condition
x < kkmTe is satisfied. The ion response takes into account the equi-
librium gradients of density and ion temperature (which are as-
sumed to be small enough to avoid ITG instability). In the lowest
order, neglecting the dispersion and the gradient of the equilib-
rium magnetic field, for V� ¼ �ðT=eB0Þðd lnðn0Þ=dxÞ, we obtain
the simple electron drift wave primary fluctuations
x ¼ x�k ¼ ky V�. Nonlinear interaction of these primary fluctua-
tions with large-scale components leads to the excitation of the
sidebands of the perturbed quantities, which can be obtained from
the respective governing equations. Defining gi ¼ o ln T0i=o ln n0,
we assume that the ion temperature sidebands follow the simple
relation T�kþq=T0i ¼ gi e/�kþq=Te. This neglects the nonlinear
generation of temperature sideband via convection. Since the
small-scale fluctuations are electrostatic (Ak = 0), Ohm’s law can
be written as

�iðX� qyV�ÞAkþq þ i
Te

e
ðqz þ kzÞ

e/kþq

Te
� nkþq

n0

� �
¼ 0: ð9Þ

Corrections due to Ak + q are small (of the dispersive order, e.g.
k2
?q2

i ) and are neglected here. As a result, we have no direct gener-
ation of sidebands of the vector potential in the Ohm’s law and the
sidebands of primary fluctuations remain electrostatic e/kþq=Te ¼
nkþq=n0. Neglecting the dispersive corrections, thus leading to
A�kþq ¼ 0, the large-scale component of the parallel momentum
balance remains linear

oAq

ot
þ o

oz
/q �

Te

e
~nq

n0

� �
þ Te

eB0

1
n0
~ez � rAq �rn0 ¼ 0: ð10Þ

For X < qzmTe, electron and ion temperature fluctuations are
determined by

rkTe ¼ 0

oTiq=otþ~VEq � rT0i ¼ 0
ð11Þ

Neglecting the magnetic gradient drift and parallel current
terms (of the dispersive order) in the electron continuity equation,
we have

nq=n0 ¼ ðqV�=XÞe/q=Te: ð12Þ

Denoting the contribution of Reynolds stress as R1, the quasi-
neutrality equation is

XDi
nq

n0
þ Tiq

T0i

� �
�XDe

nq

n0
þ Teq

T0e

� �
�Xq2

?q
2
i

nq

n0
þ Tiq

T0i
þ q2

s

q2
i

e/q

Te

� �

þ qzq2
?

l0en0
Aq þ iq2

i R1 ¼ 0; ð13Þ

where XDi;e ¼ qyVDi;e, VDi;e ¼ �2ðTi;e=eB0Þo ln B=ox, s ¼ T0i=T0e,q2
s

¼ Te=mix2
ci:

Linearizing Eq. (11) for the electron and ion temperature fluctu-
ations, and Eq. (12) for density fluctuations, neglecting dispersion
in the large-scale components, we obtain the lowest order expres-
sions for the Reynolds stress, leading to the final dispersion
relation



Fig. 1. Evolution of plasma density with seeded drift wave of large amplitude.

K. Bodi et al. / Journal of Nuclear Materials 390–391 (2009) 359–363 361
X2 þXX�sð1þgiÞ �
XDiX�
q2
?q2

s
½1þgi þ s�1ð1þgeÞ	 � q2

z v2
A

¼ � 2
B2

0

j~ez � k� qj2j/kj
2ð1þ s�1 þgiÞ ð14Þ

Here, the second term describes the drift stabilization due to fi-
nite ion temperature, the third term is the interchange drive, and
the fourth term describes the Alfven stabilization. The term on
the right-hand side is the Reynolds stress drive that takes into ac-
count the diamagnetic contributions due to finite ion temperature.
Eq. (14) is consistent with results of the previous analysis following
the wave kinetic approach [4]. Note that the growth rate of this
electromagnetic instability is a factor qsqs larger than for electro-
static modes with a finite qy. For a more detailed derivation of
the above, we refer the reader to Ref. [9].

4. Blob propagation and plasma density gradient

In this section, we present the results of our numerical study on
the behavior of perturbation in electrostatic potential in the pres-
ence of a pressure gradient. We consider plasma that is confined
in a uniform magnetic field, and normalize the length and time
scales with respect to the ion gyro radius and ion cyclotron fre-
quency respectively. We know that a perturbation in the electro-
static potential leads to a local electric field leading to ~E�~B drift
of this perturbation. Flow relative to this perturbation is two-
dimensional and, for slow magnetic field variation, incompressible
Fig. 2. Density evolution for: a blob moving along increasing densi
ðr �~V ¼ 0Þ, with a stream-function /: ~V ¼~ez �r/, and governed
by the Euler equations

o

ot
nþr � ð~VEnÞ ¼ 0 ð15Þ

o

ot
Xþr � ð~VXÞ þ~ez � ðre�rnÞ ¼ 0: ð16Þ

Eq. (16) is the vorticity, X ¼ r � ðnr/Þ, equation for non-uni-
form density where, e ¼ jr/j2=2 is the specific kinetic energy.
The energy of such a flow-field is composed only of its kinetic en-
ergy in this incompressible limit, E ¼ ne, and its evolution can be
described as

o

ot
Eþr � ð~VEÞ þ r � ð ~VpÞ ¼ 0 ð17Þ

We can see that energy is conserved.
For plasma with uniform equilibrium density described by Eq.

(15), (16), the blob motion is the same as that of a vortex-pair in
an incompressible, irrotational flow. It should be noted that, in
the absence of diffusive processes, vorticity is confined to the blob
and the flow around the blob remains irrotational. The flow-field
relative to the blob can be described by the potential flow theory
(r2/ ¼ 0). Pressure can be obtained from the energy equation at
steady state along a streamline pþ nV2=2 ¼ const. Clearly, such a
blob encounters no resultant force along its path. For a flow-field
with non-uniform plasma density along the direction of blob
ty (top) and a blob moving along decreasing density (bottom).



Fig. 3. The contours of electrostatic potential / plots of a blob moving along increasing density (top), a blob moving along decreasing density (middle), and a blob moving
through uniform density (bottom).
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propagation, though the flow-field is still described by potential
flow theory, the surrounding density difference between the lead-
ing and trailing faces of the blob leads to a resultant force towards
the lower density region. Thus, for non-uniform plasma, perturba-
tions encounter a force against the density gradient.

4.1. Numerical simulations

Computations were carried out to demonstrate the above con-
clusions. For numerical stability, diffusion and viscosity (� 10�3)
Fig. 4. Top: the equilibrium density profile. Bottom: coordinates of ‘center of mass’
of the blobs as a function of time a blob initially moving towards increasing density
(curve 1) and a blob moving towards decreasing density (curve 2). Dotted lines
correspond to inward and outward moving blobs in uniform density plasma.
terms were added to the continuity and the vorticity equations,
which were marched in time using third order Runge–Kutta
scheme (RKW3). The electrostatic potential / was computed using
the following SOR scheme

/nþ1 ¼ ð1�xÞ /n þx D�1ðX
n
� 1

n
rn � r/Þ ð18Þ

with x = 1.2, and inversion of the Laplacian, D�1, was done using
a Fourier method. We seed blobs as the perturbations of /
(maxðj/jÞ ¼ 1:0) in the form of a Gaussian profile and use non-
uniform density (see Figs. 2 and 3). Blob position was estimated
to be the centroid of / in the region of the domain containing the
blob.

It can be seen from Fig. 4 that, for the same time, the outgoing
blob traverses a much longer distance compared to the blob prop-
agating in the direction of increasing density where the blob expe-
riences strong deceleration, the blob moving towards decreasing
density experiences strong acceleration. Consequently, by the
end of the computation, the blob propagating in the direction of
decreasing density has reached the boundary, whereas the blob
propagating in the direction of increasing density is still in the re-
gion of varying density.

5. Conclusions

Using four-wave interaction technique we confirm the results
of Ref. [4] that the interplay of the interchange drive and nonlin-
ear effects associated with drift wave turbulence (which is rather
strong at the edge in L-mode) can lead to the sub-critical excita-
tion of the interchange mode and blob generation. The impact of
equilibrium plasma density variation on the propagation of
seeded blobs (no interchange drive) has been studied and clearly
demonstrates the preferences for the blobs propagating into low
plasma density, suggesting convective nature of non-uniform
plasma transport.
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